

- The experimental (Phase I) stage of NMME project supplies routine guidance to users of the NMME forecasts; Phase II is in operation now.
- Diagnostic verification of NMME seasonal and monthly prediction
 - Anomaly correlations (AC) calculated from 29 years of hindcasts (1982-2010)
 - Phase I realtime seasonal and monthly T2m and Prate forecasts from August 2011 to July 2012 over CONUS
 - Focus on the prediction of 2011/12 winter (DJF).
- Motivation of this study: to provide skill benchmarks for future improvements of the NMME seasonal and monthly prediction system.

- Forecasting system consisting of coupled models from U.S. and Canadian modeling centers
- MME approach has been proven to produce better prediction quality than any single model ensemble
- Phase I (Aug. 2011 July 2012) included 2m surface temperature, SST, and precipitation rate
- Realtime and archived forecast graphics from Aug.
 2011 present are available at www.cpc.ncep.noaa.gov/products/NMME
- Other verification
 activities: http://iridl.ldeo.columbia.edu/home/.tippett/.NMME/.Verification/

NMME Phase I Forecast Providers

Model	Hindcast Period	Ensemble Size	Lead Times	Arrangement of Ensemble Members	Contact and reference
CFSv1	1981-2009	15	0-8 Months	1 st 0Z +/-2 days, 21 st 0Z +/-2d, 11 th 0Z+/- 2d	Saha (Saha et al. 2006)
CFSv2	1982-2009	24(28)	0-9 Months	4 members (0,6,12,18Z) every 5 th day	Saha (Saha et al. 2010)
GFDL-CM2.2	1982-2010	10	0-11 Months	All 1 st of the month 0Z	Rosati (Zhang et al. 2007)
IRI-ECHAM4- f	1982-2010	12	0-7 Months	All 1 st of the month 0Z	DeWitt (DeWitt 2005)
IRI-ECHAM4- a	1982-2010	12	0-7 Months	All 1 st of the Month 0Z	DeWitt (Dewitt 2005)
CCSM3.0	1982-2010	6	0-11 Months	All 1 st of the Month 0Z	Kirtman (Kirtman and Min 2009)
GEOS5	1981-2010	6	0-9 Months	1 Member every 5 th day	Schubert (Vernieres et al. 2011)

Skill assessment for winter (DJF): precipitation rate

AC from 1982-2010 hindcasts

AC & RMSE from 1982-2010 hindcasts: Northern Hemisphere

AC & RMSE from 1982-2010 hindcasts: Southern Hemisphere

AC & RMSE from 1982-2010 hindcasts: Tropics

US DJF
forecast from
November
initial
conditions

November 2011 initial conditions lead-1 forecast for US DJF 2012 prec. rate forecast (NMME lower 48 SS=-04)

Prate over lower-48 US: monthly mean forecast skill scores

	Oct 2011	Nov 2011	Dec 2011	Jan 2012	Feb 2012	Mar 2012	Apr 2012	May 2012	Jun 2012	Jul 2012
20110 9	-03	-02	-31	27	12	23	15			
20111 0		0	-16	41	12	17	11	33		
20111 1			-31	34	06	09	04	58	35	
20111				18	15	11	05	39	60	05
20120 1					20	10	14	40	54	39
20120 2						15	15	40	49	21
20120							13	46	53	28

Skill assessment for winter (DJF): 2m temperature

AC from 1982-2010 hindcasts

Skill assessment for winter (DJF): 2m temperature

AC & RMSE from 1982-2010 hindcasts: Northern Hemisphere

Skill assessment for winter (DJF): 2m temperature

AC & RMSE from 1982-2010 hindcasts: Southern Hemisphere

Skill assessment for winter (DJF): 2 m temperature

AC & RMSE from 1982-2010 hindcasts: Tropics

Skill assessment for winter 2011-2012: 2m Tmp

from
November
2011 initial
conditions

US DJF 2012 t2m forecast from November 2011 initial conditions (NMME lower 48 SS=47)

Tmp2m over lower-48 US: monthly mean forecast skill scores

	Oct 2011	Nov 2011	Dec 2011	Jan 2012	Feb 2012	Mar 2012	Apr 2012	May 2012	Jun 2012	Jul 2012
20110 9	35	17	36	85	30	65	51			
20111		24	0	83	23	64	58	59		
20111			17	69	48	70	54	64	46	
20111				62	21	58	31	12	44	39
20120 1					34	71	61	61	42	18
20120						76	59	61	38	61
20120							55	53	28	64

AC from 1982-2010 hindcasts

AC & RMSE from 1982-2010 hindcasts: Northern Hemisphere

AC & RMSE from 1982-2010 hindcasts: Southern Hemisphere

AC from 1982-2010 hindcasts: Tropics

Summary

- At lead 1, NMME anomaly correlations for DJF are higher than those of individual models
- DJF 2011-2012 was a difficult case, but Lead-1
 T2m forecasts over CONUS were reasonably good; precipitation rate forecast had low skill
- Warm late winter and spring over CONUS were fairly well forecast, even at long leads
- Full verification analysis should help to identify sources of strength/weakness

